\( f(x) \sim \sum_{n=1}^{\infty} \frac{(n+1)}{2^{n+2}} x^n \),收敛域为 \( (-2, 2) \)
\( (0, 0) \) 不是极值点,\( (-2, 0) \) 为极大值点,极大值为 \( f(-2, 0) = 8e^{-2} \)
由 \( (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \) 行简化得:
\[ \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 \\ -1 & 0 & 1 & -1 \\ -1 & -2 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]
故 \( r(\alpha_1, \alpha_2) = r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 2 \),故极大线性无关组中有2个向量。
又由 \( \alpha_1, \alpha_2, \alpha_3, \alpha_4 \) 均可由 \( \alpha_1, \alpha_2 \) 线性表示,故 \( \alpha_1, \alpha_2 \) 为向量组 \( \alpha_1, \alpha_2, \alpha_3, \alpha_4 \) 的一个极大线性无关组。
\[ H = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix} \]
\[ A = \begin{pmatrix} 1 & -8 & -9 & 9 \\ 0 & -1 & -1 & 1 \\ -1 & 9 & 10 & -10 \\ -1 & 7 & 8 & -8 \end{pmatrix} \]
(i) \( T \) 的概率密度为:
\[ f_T(t) = \frac{n}{\theta} e^{-\frac{n}{\theta}t}, \quad t > 0 \]
故 \( a = n \)
(ii) \( D(\hat{\theta}) = \theta^2 \)
\( \theta \) 的极大似然估计量为:
\[ \hat{\theta} = \frac{1}{k} \left[ \sum_{i=1}^{k} t_i + (n-k)t_k \right] \]